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Asymptotic calculations of the exchange integrals with excitation transfer and without excitation 
transfer are carried out. The atoms are considered in the ground or excited states. The effect of the 
spin of the atomic core is taken into account. 

Es werden asymptotische Ausdrticke fiir Austauschintegrale berechnet, wobei auch Llbergang 
yon Anregung eingeschlossen wird. Ferner wird der Einfluf3 der Spins der Atomriimpfe behandelt. 

Calcul asymptotique des int6grales d'6change avec et sans transfert d'excitation. Les atomes 
sont envisag6s dans l'6tat fondamental ou les 6tats excites. L'effet du spin sur le coeur atomique est 
pris en consid6ration. 

1. Introduction 

Difficulties met by calculations of the interactions between atoms and molecules 
are well known. To a considerable degree these difficulties are connected with the 
calculation of exchange integrals. Unfortunately the numerical procedure is not 
reliable for large internuclear distances. Thus such calculations are almost useless 
for several analytical investigations. 

But there exists a number of problems for which analytical expressions for the 
exchange integrals can be obtained. The processes in question are those taking 
place at distances much larger, than the gas kinetic radii of the colliding partners. 
These will be, processes of charge and excitation transfer, transitions between 
the fine structure components, the electron-vibrational transitions etc. They occur 
at large distances either because of the slowness of the collisions in the low- 
temperature plasma or because of the resonance character of the process. In order 
to calculate the exchange interactions between atoms and molecules involved in 
such processes asymptotic methods appear to be useful. 

The purpose of the present paper is to calculate the exchange interaction 
between two one-electron atoms. This interaction might be accompanied by the 
transfer of the excitation. The atoms are considered in ground or excited states 
and may possess a nonzero orbital angular momentum. An important example 
for such a situation is presented by atoms of the alkali metals in excited p-states. 

The method of calculation is based on the generalization of the procedure, 
used by Gor 'kov and Pitaevski [1], and Herring and Flicker [2], who considered 
the calculation of the splitting between the lowest singlet and triplet states of the 
hydrogene molecule. It should be noted, that Ref. [3], [-4], which treat the same 
subject contain either some principle or calculational errors. 
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2. Outline of the Method 

It has been shown in Ref. [1], [2], that the Heitler-London approximation, 
used initially for the calculations on the chemical bond, is inadequate for the large 
internuclear distances R. This is connected with the fact, that the treatment of the 
interelectronic interaction as a perturbation is a valid approximation only for 
atoms, but not for molecules. The inadequacy of the Heitler-London approxima- 
tion manifests itself in the logarithmic term in the asymptotic expression for the 
singlet-triplet splitting in the hydrogene molecule: 

[ 1 E s - E A = -  45 15 ( c + l n R )  R S e x p ( - 2 R ) + O ( R 2 e x p ( - 2 e ) )  (1) 

c = 0,5772. 

This logarithmic term leads to the incorrect sign of(E s - EA) for large R. In reality 
the electronic repulsion is stronger in the Heitler-London states, than in the correct 
singlet and triplet states. When this effect is taken into account, the logarithmic 
term disappears and the correct sign for the splitting is obtained. 

Neglecting the spin-orbit interaction the two-electron molecular wave func- 
tion can be expressed in the form of a simple product:  

7~X(rl, r2, a) f s s (~ l ,  a2) (2) 

where T depends only on the space variables and f only on the spin variables. 
Here 2 = + A is the component of the orbital angular momentum along the 
molecular axis, A is the modulus of this component,  S, M s are the total spin and it's 
component along the same axis, 7 indicates all other quantum numbers, and 2a 
is the distance between the nuclei, which is supposed to be large compared to the 
characteristic lengths associated with the variables r,  and r 2. It is suitable to 
introduce the following linear combinations of the functions: 

+ Y,  cr x ' 
/ 2  ( )~ - -  ' i 

(3) 
1 

- v , s  

The " BU..) functions ~g(~m)~ become the products of the atomic functions when r~ ~ - a 
and rz--+a, l and m being the orbital angular momentum of the atom and its 
component along the molecular axis. The summation over i in Eq. (3) is taken over 
all possible degenerated states of the separated atoms, going over into the given 
molecular state. If there is not enough symmetry, the coefficients C~ have to be 
obtained by the variational principle. The functions k~{,~ and 7J~],~ introduced 
above describe the electrons localised close to one of both nuclei (~ and fl see 
Eq. (5)). 

Following the method of Ref. [-1], the triplet-singlet splitting due to the 
exchange interaction is now expressed by a surface integral: 

z = v 6  * - * I,.~ T II,.,1, [76 ~Ji~2) - -  (~/I--> ~T/II)] d ~  ( 4 )  

2 
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where S is a surface separating the regions between which the exchange of the 
electrons takes place. V 6 is the six-dimensional gradient in the configurational 
space of two electrons. It is convenient to take S in the form z, = z2 if the ionization 
potentials of the atoms are approximately equal. In this case we have 

- i  -j dz dx,  dy, dx2 dy2 
i j 

--a --oo 

~pB(~l; Z-re)j* (rE, r0"  3 3 _ ,  B(p,; X-m), (ra, r2) 
X L A(Mm)j ~Zt "l'A(Mm)i 

- -  1~B(fll:A(,Im)i2-m)i* (rx, r2 ) . ~az, ~rA(~tlm)j'"B(fll"'Z-m)' ( r2 ,  r l ) ]  z '=O 

(5) 

where 

= ~ ~ C~ C~* I [(ern)i (fl, 2 - m)~ I (~rn)j (/3, 2 - rn)j] 
i j 

Z = (Z 1 "~- z2)/2 ; z' = z, - z 2 ; e = ~ ; fi = ]/2IB ; 

IA, Ia 

being the ionisation potentials of the atoms A and B. The quantities I[-...] defined 
by the energy difference [Eq. (4)] correspond to the two-electron exchange 
integrals in the Heit ler-London method. It  is possible to limit the variation of z 
in the first integral in Eq. (5) to the range between the two nuclei, because the 
neglected part  of the integral is of the order of R-l/(~+ig) in comparison with the 
main term. In order to calculate the integrals in Eq. (5) we have to find the functions 
~pB(nz; Z-m), which correspond to the product  of the atomic functions at r I - + -  a, A(ctZm)i 
r 2-* a and take into account the correlation effects in the intermediate region. 
To obtain an equation for ,,,B(..), 'Fg(otlm)i we shall neglect the energy difference between 
molecular states and states of separated atoms. This difference is of the order of 
not more than R -  a. This assumption leads to a separate equation for each function 
~pa~21~',. Since the wave function decreases rapidly off the internuclear axis it is only 
necessary to find it accurately in a narrow cylindrical region with the length R and 
the radius R 1/2. We try as a solution 

•/)B(fl/', ~,-m)i {~. A(~Im), V l ,  r2) --  1])1 (r l ,  r2) = ~0A(rl) q~B(r2) Z d r l ,  r2) 
~n(/~l; ~ - mh 

A(~Z~)~ (r2,r*)=--lp2(r2,rl)=~~ 
(6) 

where Z is a slowly variing function of rl, r2, and q)A, ~0B are the wave functions 
of the electrons, centered on the atoms A and B respectively. We are interested 
in large internuclear distances so that asymptotic representations for 4o A and 4% 
can be used: 

q)A(r 0 = A,rl/~-1 exp(--  o~rl) YF"(O,, (ol) 
(7) 

OB(r2) = A2r~/t3-1 exp(--  fir2) Yl~,~(02, 02). 



Exchange Integrals 169 

Introducing the cylindrical coordinates we get the following expression for 91 
in the cylindrical region mentioned above: 

~P l (r l, r 2) = A 1 A  2 (a + Zl) 1/~- 1 (a -- z2) ' /~- 1 exp [-- a(c~ + fl) -- ez 1 

+ flz2 - ctQ~/2(a + zl)  - f102/2(a - z2) ] YL ml (01, qo 1) Y/'m2(02, (I)2) X1 (1"1, r2); (8) 

F (2/+ 1) (l + m)! ]1/2 0" exp(im(p) 
Y["(O'~~ L ~ ( l -  m)t j m!2" 

Approximation (8) is valid under conditions 1zl,2[ < a, Q,,2 --< V ~ which allow to use 
expansions ofr  I and r 2 in terms of 1/aand of Yt ~ in terms of 0(0 ~ 0/a). 

Substituting 91 into the wave equation and neglecting the second derivatives 
of X1 , we obtain: 

c ~  ~1 z - l T a j ~ -  Q2 a - - z 2  002 
(9) 

[. ] f 1 i 1 l 1 rnl 8Z1 m 2  ( ~ Z 1  ..~ . -~- Z l  = 0 

- - i  OF (~(t91 -}- ~2 Dq~2_] /"12 a - - z l  a-{-z 1 ~ a  " 

This equation is still too complicated for practical use, but some simplifications 

can be made. Brackets before ano ~ - 2  vanish at the maximum of the func- 

tions (PA and ~0 B on 2; and the terms containing 321 ~?Za 0oPt ' c~02 are of less order of 

magnitude than the main terms in the vicinity of this maximum. Thus we obtain an 
equation, which has been considered already by Smirnov and Chibisov [5] : 

c ~ - f i  + - - + )~1=0. (10) 
/ '12 a - -  Z 1 a AV Z 2 

A solution, satisfying the boundary conditions (X1 -~ 1 when z~ ~ - a, z 2 --+ a) has 
the following form in the region z > 0 of the surface z 1 = z2: 

1 1 1 

R 1/~ exp[--  ( a -  z) /~R] (c~ + fl)~ ~+~ x Or~ 13 
Z1 = 1 1 1 1 ; 

e0 ~+B .2,+0(a_zt)~+/~ . ( a + z ) l / ~  

012 = ] ~ 1  - -  X2) 2 ~- (Yl - -  22)  2 .  (11)  

The function Z2 is obtained in an analogous way. These functions decrease 
according to the power law in the region of small 012 in contradiction to the 
Heitler-London behavior. Just this fact yields the correct sign of the exchange 
integrals at all internuclear distances. To be consistent with all approximations 
made only the exponentials of the functions ~Pl and tp2 in Eq. (5) are to be differen- 
tiated. 

3. Exchange Integrals without Excitation Transfer 

There are two possible types of exchange integrals according to the assignment 
of ~i and fly The integrals without excitation transfer are defined by requiring 
cq =~j  = ~; fli = flj = ft. The corresponding integrals for atoms in s and p-states 
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will be considered first. The integration over Q1 and Q2 in Eq. (5) is easily carried 
out if the new variables 012 = 0 i -  Qa and 0=�89 +Q2) are introduced. The 
integrals I[mle, mzfi[em'lfim'2] corresponding to the exchange (c~mi)~(flm'2) 
and (flm2)~ (em'~) are listed in the Tables 1 and 2, where # stands for ~ + fl and 

(1) 
Ik.(R,~,fl)= R ~ ~ , exp(_#R) 9 A2A2 F 

2 
1 

x --#2 " T . f i ;  exp - ( c~ - f l )R t+  f i ( t - 1 )  
0 

2 2 1 2 1 ( - -  ) ' 2 +  l + k '  

" ( l - t )  ~ u [ # + ( f i - - e )  t ] -  " dt (1 + t) ~ - - 7  + - - "  . . . .  ~" • 
% 

1 

+ ?-c~ ~- exp ( ~ - f l ) R t + l ( t - 1 )  ( t + l )  ~- -~-+~-+"  

o 

(12) 

21 } 
x ( l - - t )  ~ u " [ # + ( a _ f l )  t] - ( 2 + L + g ) d t  /t 

Table 1. Exchange integrals I[em 1 tim2 [em'i tim'2] without excitation transfer for atoms in P-states 

N~ ml 

ml mm2 ~ 

1 1 

1 0 

0 1 

1 - -1  

- 1  1 

0 0 

1 1 0 1 - 1  0 

1 0 1 - - 1  1 0 

X (1+  )lR-112o 
1 

- -111  
# 

2 + 1 ) I ~ o  

•lI1 - 1 

P 

1 - 12o 
l.l 

-[2+(2+:) 
x(l+l)]R-1Iuo 
1 

- -110  
# 

_[2+(2+1) 

1 
--11o /, �9 

1 
- -110  
# 

1 
- -110  
# 

- Rloo 
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It is seen from Eq. (12) that in the case ofct ~ fl it is impossible to find an explicit 
dependence on R (in contrast to the integrals with excitation transfer, see below). 
But the integrals in Eq. (12) can easily be estimated or calculated numerically. 
For  the case of almost equal e and fl the integrand can be expanded in powers 
of (a - #) R. 

T a b l e  2. Exchange integrals without excitation transfer for  atoms in S or P-states 

R 
I(Sc~, OfllSc~Ofl)= - ~ - I o o ( R ,  e, fl) 

1 
I(Sc~lf i lScel f l )= ~ I a _ l ( R ,  cqfl) 

R 
I(SccSfllSc~Sfl) = - ~ Ioo(R, c~, fi) 

4. Exchange Integrals with the Excitation Transfer 

There exists another type of the exchange integrals which corresponds to the 
case ~i--flj = ~; ~j = fli = ft. These integrals appear, when interactions between 
identical atoms in the ground and excited states are considered. Let the exchange 
take place in the following way: (~ml)~(~m'2),  (flm2)-~(flm' O. The integrals 
are listed in the Tables 3 and 4 for the case of atoms in S or P-states, using the 
notations: # = ~ + fl, 

I~,(R, c q f l ) = R  ~ ~ - 7 - : e x p ( - I ~ R ) A 2  A2 F 

1 i 71 1 { (1+)  9 + P (•) P (fl) ~ d t e x p  + 
x ~#[2~] ~ 

o 

i + k  1+ 1 1 k 
x ( t -  1) (1 + t) ~- -(1 - -  t ) a  f l - - - ~ - - -  "(1 --}- t 2 )  k . 

(13) 

The calculation is carried out according to Eq. (5) with the help of the substitu- 
tion r = r - r  r = er + flr It is possible to find an explicit dependence of 
I[rnl cr rn2fi l mi fl m'2c~] on R. 

T a b l e  3. Exchange integrals with excitation transfer for  atoms in S or P-states: I [Sctmfl[m'flScQ 

R 
I[Sc~OHIOHScq = 7 ~2I'~ ~' fl) 

R 2 
I [So~SfllSflSct ] = - ~ # I'o (R, cr fl) 
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Table 4. Exchange integrals I [m t a m 2 fll flm'~ am'2] with exeitation transfer 

ml 

1 1 

1 0 

0 1 

1 - 1  

-1 1 

0 0 

1 1 

1 0 

--[4+34-12 

+ 

x R-1I'0 

I i  

# I 1 4 - ~  

x 1'0 

br atoms in P-states 

0 1 - 1  0 

1 - 1  1 0 

x I'0 

+ ~/~ \ 

x R - t I ' 0  

- 4 +  + ~  

x R - t I ' 0  

Ii 

1 - x 1'0 
# 

x'0 

I'o 

I'o I'o - # 2 R I ' 0  

5. The Effect of the Spin of the Atomic Core 

Till now we have neglected the spin of the atomic core. Let the cores of the 
atoms A and B possess spins SA and SB. The total spins $1 and $2 result from the 
addition of the spins of the cores and the electronic spins Sx and s2. If the spin- 
orbit interaction is neglected, the total spin S and it's z-component M s are good 
quantum numbers for the molecule. At large internuclear distances the following 
coupling scheme of the spin momenta is chosen: SA + Sl = $1 ; SB + s2 = $2. We 
shall take the wave function of the two atoms as the eigenfunctions of the total 
spin S and its z-component Ms,  antisymmetrized with respect to the permutations 
of the electrons: 

~sls2 = �89 [ISAS~S~ ; SBs2S2, S M s )  (~t'~ o + ~'~,u) Z~,SMs , (14) 
--[SAs2St ; SBs~S2, S M s )  ( ~ , g  - ~V~,,)]. 
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The functions 7J,~,o,, are defined by Eq. (3). When the atomic cores possess nonzero 
spins, the splitting between the molecular terms is due not only to the Hamiltonian 
H(ra, r2) of the valence electrons, but also to the total atomic spins S~ and S z. The 
fact that the functions ~],0,, are substituted into Eq. (4) from Eq. (3) is equivalent 
to the assumption that the intra-atomic interactions effect negligibly the correction 
to the atomic functions for the correlation of the valence electrons characterized 
by the functions )6 Now we have obtained for the energy of the interatomic 
interactions: 

(IztS ~S2SA SB tlIS1SzSA Sa \ ~X~SMs H(rlr2) ~x~s Ms, /-= �89 E]o) 

X t~SS,(~MsMs, 1 7 -- ~(E2g - E~u ) ( SA sI S1 ; SBS2S2 ; S Ms[ SA s2S1 ; 
(15) 

x S~s,S2; S'Ms,5= �89 [(EL + E~) + ~ (E~ - E,L) ( -  1) 2~"-~s~ 

x [2S1+ 1] [2S2 + 13 �89 SB 6SS'6M~M~, 
S 1 $2 

where �89 SB is the 9j-symbol, which characterizes the "overlap" of the 
$1 82 

spin wave functions, corresponding to the different schemes of the coupling of the 
spin momenta. The algebraic expressions for different 9j-symbols are listed in 
Ref. [6] (see also Ref. [7]). 

In the case of identical atoms in different states the exchange of the spin states 
can take place. An analogous argumentation leads in this case to the following 
expression for the interatomic interaction energy: 

( []~S1S2SA SB ~S1S2SA S B I~SMs I g(rlr2) ~ S M s  ) = �89 

+ �89 ~ CiC*(-  1) 2s" -2s2,-2s,2 [(2S1~ + 1) (2Slj + 1)(2S2, + 1) 
i) 

x (2S2/+ 1)] ~ �89 SB $2,~ I[(c~m)i(fl, 2 -  m)i[(c~rn)j(fl, 2 -  m)j]. 
S l j  S2j  S )  

(16) 

S l j  "~ S2j  may be equal to either S 1 or $2, thus taking into account the exchange of 
the spin states. 

6. Conclus ion 

The method of the asymptotic calculation of the exchange integrals provides 
the easiest way for the estimation of the interatomic interaction at large distances. 
At these distances the corrected first order (exchange) contribution and the 
uncorrected second order contribution to the interatomic energy are additive, 
so that the comparison between both is strait forward. For systems such as alkali 
atoms the exchange interaction is stronger than the Van-der-Waals interaction 
up to distances of 10-15 a.u. 
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T h e  m e t h o d  p r e s e n t e d  h e r e  m i g h t  be  e x t e n d e d  to a t o m s  wi th  e q u i v a l e n t  

e lec t rons ,  such  as o x y g e n  a n d  n i t rogen .  H o w e v e r ,  this  e x t e n s i o n  needs  s o m e  

m o d i f i c a t i o n s  o f  t he  c o u p l i n g  scheme,  w h i c h  wil l  be  d i scussed  e l sewhere .  

The autors are indebted to Dr. E. E. Nikitin and Dr. M. Ja. Ovchinnikova for very valuable 
discussions. 
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